Bom nós antes de começarmos a falar do assunto, vamos saber um pouco sobre esse matemático histórico chamado Pitágoras.
Bem, Pitágoras de Samos (do grego Ο Πυθαγόρας ο Σαμιος) foi um filósofo e matemático grego que nasceu em Samos entre cerca de 570 a.C. e 571 a.C. e morreu em Metaponto entre cerca de 496 a.C. ou 497 a.C.Pitágoras foi o fundador de uma escola de pensamento grega denominada em sua homenagem de pitagórica. Teve como sua principal mestra, a filos ofa e matemática Temstocléia.
Agora vamos ao assunto. O Teorema de Pitágoras é uma relação matemática entre os três lados de qualquer triângulo rectângulo,no Teorema de Pitágoras os lados do triângulo recebe nomes que são os Catetos que são os dois lados menores e a Hipotenusa que é o maior lado e fica em frente ao ângulo de 90°graus, veja a imagem abaixo.
A formula desse assunto é assim
Vamos fazer agora um exercício com usando esta formula.
Neste triângulo retangulo tem a hipotenusa de valor 10 e catetos de valores
6 e x.Vamos isolar a hipotenusa da mesma forma que esta a formula acima, mas como a hipotenusa é 10 e não uma icognita vamos isolar o 10 no outro lado pois nesse caso a ordem dos fatores não altera o produto.
x² + 6² = 10²
x² + 36 = 100
x² = 100-36
x² = 64
x = √64
x = 8
Pronto está feito agora vamos ver se está certo mesmo vamos substituir o x por 8 (pois 8 foi o valor de x). Irá fica assim:
8² + 6² =10²
64 + 36 = 100
100 = 100 -> VERDADEIRO
NOSSA RESPOSTA ESTÁ CERTA.
•VEJAMOS OUTRO EXEMPLO:
x² + 8² = 10²
x² + 64 = 100
x² = 100 - 64
x² = 36
x = √36
x = 6
CES - Colégio Elizabeth Souza - 9º ano // Professor: Luciano Reis // Alunos: José Renato Barradas e Leonardo Almeida. // Este blog foi criado com um unico objetivo: O Conhecimento! Aqui é um local onde todos nós podemos ao mesmo tempo adquirirmos e trocarmos conhecimento e duvidas. Alem disso estarão dísponiveis questões de matematica com gabarito para serem respondidas e treinadas! Esperamos que gostem e aproveitem para mandar dúvidas e opiniões. Obrigado!
terça-feira, 28 de setembro de 2010
domingo, 26 de setembro de 2010
Semelhança de Triângulos
Iremos analisar triângulos das mais variadas formas, em sua correspondencia.
Os angulos acima são todos congruentes e os lados correspondentes, portanto eles são semelhantes. Veja que seus lados iguais possuem a mesma medida.
Existem casos em que deve-se armar uma proporção para descobrir se os triangulos são semelhantes, ou uma icógnita. Nesse caso iremos analisar os angulos que são congruentes e deveremos armar a proporção com os lados correspondentes do triangulo.
Bem, é isso! Pratiquem e formem as proporções dos lados corretamente. Para isso não se engane com as posições do triangulo. Inverta as posições das maneiras mais lógicas ou se baseie pela medida dos angulos.
••• Bons Estudos •••
Assuntos Pré-requisitos:
- As 4 Operações
- Potenciação
- Números Fracionários
- Potencia com expoente fracionario
- Radiciação: Operação com radicais e Simplificação de radicais
- Razão e Proporção
- Grandezas proporcionais
- Equações do 1º grau
- Equações do 2º grau, literarias, irracionais, biquadradas.
- Teorema de Tales.
- Teorema de Tales no Triângulo
- Semelhança de Polígonos
Os angulos acima são todos congruentes e os lados correspondentes, portanto eles são semelhantes. Veja que seus lados iguais possuem a mesma medida.
Existem casos em que deve-se armar uma proporção para descobrir se os triangulos são semelhantes, ou uma icógnita. Nesse caso iremos analisar os angulos que são congruentes e deveremos armar a proporção com os lados correspondentes do triangulo.
Bem, é isso! Pratiquem e formem as proporções dos lados corretamente. Para isso não se engane com as posições do triangulo. Inverta as posições das maneiras mais lógicas ou se baseie pela medida dos angulos.
••• Bons Estudos •••
Assuntos Pré-requisitos:
- As 4 Operações
- Potenciação
- Números Fracionários
- Potencia com expoente fracionario
- Radiciação: Operação com radicais e Simplificação de radicais
- Razão e Proporção
- Grandezas proporcionais
- Equações do 1º grau
- Equações do 2º grau, literarias, irracionais, biquadradas.
- Teorema de Tales.
- Teorema de Tales no Triângulo
- Semelhança de Polígonos
sexta-feira, 24 de setembro de 2010
Polígonos Semelhantes
Bem pessoal esse assunto não é nada difícil, basta só prestar atenção
Polígono semelhantes são dois polígono com o mesmo número de lados, sendo possível fazer uma correspondência entre seus vértices, onde os ângulos correspondentes são congruentes e os seus lados são proporcionais. Então observe esse dois quadrilateros
Para os lados serem correspondentes eles tem que dar o mesmo resultado. Vejamos:
2,0/3,2 = 0,625
3,0/4,8 = 0,625
AB/A'B' ou 3,8/5,7 = 066
BC/B'C' ou 4/6 = 066
CD/C'D' ou 2,4/3,6 = 066
DA/D'A' ou 2/3= 066
Se os angulos forem congruentes e os lados forem correspondentes (iguais) com a mesma razão de semelhança, os polígonos serão semelhantes.
Essa é a definição do assunto, angulos congruentes, verificar a correspondencia dos lados e a semelhança dos polígonos!
Polígono semelhantes são dois polígono com o mesmo número de lados, sendo possível fazer uma correspondência entre seus vértices, onde os ângulos correspondentes são congruentes e os seus lados são proporcionais. Então observe esse dois quadrilateros
• Os Angulos correspondentes são:
Para os lados serem correspondentes eles tem que dar o mesmo resultado. Vejamos:
2,0/3,2 = 0,625
3,0/4,8 = 0,625
AB/A'B' ou 3,8/5,7 = 066
BC/B'C' ou 4/6 = 066
CD/C'D' ou 2,4/3,6 = 066
DA/D'A' ou 2/3= 066
Se os angulos forem congruentes e os lados forem correspondentes (iguais) com a mesma razão de semelhança, os polígonos serão semelhantes.
Essa é a definição do assunto, angulos congruentes, verificar a correspondencia dos lados e a semelhança dos polígonos!
••• Bons Estudos •••
Assuntos Pré-Requisitos:
- As 4 Operações
- Potenciação
- Números Fracionários
- Números decimais
- Razões e Proporções
quinta-feira, 23 de setembro de 2010
Teorema de Tales no Triângulo
O assunto ainda é Teorema de Tales, porém tem uma diferença: É no triangulo.
Como assim?
Veja na figura abaixo:
• O segmento DE é Paralelo a BC, portanto a proporção vai ser:
Viu como é fácil a resolução??
É a mesma coisa, iremos seguir apenas as tranversais e armar as proporções, analisando também os segmentos paralelos. Só temos que tomar cuidado para não armar as proporções de maneira errada!
•VEJAMOS OUTRO EXEMPLO:
PARA O VALOR DE x SÓ IREMOS USAR O '2', pois valores como '0' ou valores 'menores do que 0' não são aceitos como segmentos. Afinal não existem segmentos NEGATIVOS ou com valores NEUTROS. FIQUE ATENTO NISSO!!
Pois bem, o assunto é esse. Bem simples não é? E se você estudar mais, será ainda mais simples!!
••• Bons Estudos •••
ASSUNTOS Pré Requisitos: Necessarios para entender Teorema de Tales no triângulo
- As 4 Operações
- Potenciação
- Números Fracionários
- Potencia com expoente fracionario
- Radiciação: Operação com radicais e Simplificação de radicais
- Razão e Proporção
- Grandezas proporcionais
- Equação do 1º grau
- Equações do 2º grau, literarias, irracionais, biquadradas.
Como assim?
Veja na figura abaixo:
• O segmento DE é Paralelo a BC, portanto a proporção vai ser:
Viu como é fácil a resolução??
É a mesma coisa, iremos seguir apenas as tranversais e armar as proporções, analisando também os segmentos paralelos. Só temos que tomar cuidado para não armar as proporções de maneira errada!
•VEJAMOS OUTRO EXEMPLO:
PARA O VALOR DE x SÓ IREMOS USAR O '2', pois valores como '0' ou valores 'menores do que 0' não são aceitos como segmentos. Afinal não existem segmentos NEGATIVOS ou com valores NEUTROS. FIQUE ATENTO NISSO!!
Pois bem, o assunto é esse. Bem simples não é? E se você estudar mais, será ainda mais simples!!
••• Bons Estudos •••
ASSUNTOS Pré Requisitos: Necessarios para entender Teorema de Tales no triângulo
- As 4 Operações
- Potenciação
- Números Fracionários
- Potencia com expoente fracionario
- Radiciação: Operação com radicais e Simplificação de radicais
- Razão e Proporção
- Grandezas proporcionais
- Equação do 1º grau
- Equações do 2º grau, literarias, irracionais, biquadradas.
Teorema de Tales
Os feixes de retas paralelas cortadas ou intersectadas por segmentos transversais formam segmentos de retas proporcionalmente correspondentes.
Veja na imagem:
ONDE:
•E assim iremos construir as proporções de acordo com as mesmas transversais que atravessas as paralelas:
Determinando o valor de x:
Verificando se está certo:
2x – 3 --> 2.4 – 3 = 5
x + 2 --> 4 + 2 = 6
*VEJAMOS OUTRO EXEMPLO:
• Descubra o valor de x:
COMO VOCÊS PODEM VER É UM ASSUNTO MUITO FÁCIL, QUE ENVOLVE PROPORÇÕES...
••• Bons Estudos •••
ASSUNTOS Pré Requisitos: Necessarios para entender Teorema de Tales
- As 4 Operações
- Potenciação
- Números Fracionários
- Potencia com expoente fracionario
- Radiciação: Operação com radicais e Simplificação de radicais
- Razão e Proporção
- Grandezas proporcionais
- Equação do 1º grau
- Equações do 2º grau, literarias, irracionais, biquadradas.
Veja na imagem:
ONDE:
•E assim iremos construir as proporções de acordo com as mesmas transversais que atravessas as paralelas:
Determinando o valor de x:
Verificando se está certo:
2x – 3 --> 2.4 – 3 = 5
x + 2 --> 4 + 2 = 6
*VEJAMOS OUTRO EXEMPLO:
• Descubra o valor de x:
COMO VOCÊS PODEM VER É UM ASSUNTO MUITO FÁCIL, QUE ENVOLVE PROPORÇÕES...
••• Bons Estudos •••
ASSUNTOS Pré Requisitos: Necessarios para entender Teorema de Tales
- As 4 Operações
- Potenciação
- Números Fracionários
- Potencia com expoente fracionario
- Radiciação: Operação com radicais e Simplificação de radicais
- Razão e Proporção
- Grandezas proporcionais
- Equação do 1º grau
- Equações do 2º grau, literarias, irracionais, biquadradas.
Assinar:
Postagens (Atom)